پیش بینی محتوای رطوبتی پسته رقم اکبری با شبکه عصبی مصنوعی

نویسندگان

(pages 45-56) a. baharlooei

m. omid

h. ahmadi

sh. rafiei

چکیده

به منظور پیش بینی محتوای رطوبتی پسته رقم اکبری به کمک شبکه عصبی مصنوعی، آزمایشاتی در پنج سطح دمایی از 40 تا 80 درجه سانتی گراد، چهار سرعت جریان هوای ورودی بین 5/0 تا 2 متر بر ثانیه و در سه تکرار (جمعا 60 سری) در یک خشک کن لایه نازک انجام شد. رطوبت اولیه پسته در آغاز آزمایش ها 30 درصد بر پایه خشک بود. پس از انجام آزمایش ها داده ها به محیط شبکه عصبی مصنوعی منتقل شدند. به منظور توسعه مدلهای شبکه عصبی مصنوعی ابتدا داده ها به سه بخش آموزشی (70 درصد)، اعتبارسنجی (10 درصد) و آزمون (20 درصد) تقسیم شدند. شبکه ها با ساختار پرسپترون چند لایه به صورت دو، سه و چهارلایه آموزش داده شدند. معیار انتخاب بهترین شبکه بیشترین ضریب تبیین و کمترین مقدار متوسط مربع خطا (mse) بود. در پیش بینی محتوای رطوبتی پسته رقم اکبری شبکه سه لایه با ساختار 1-5-8-3 بهترین نتیجه را داد. این شبکه در لایه پنهان اول 8 نرون و در لایه پنهان دوم 5 نرون دارد. مقادیر ضریب تبیین و mse آن به ترتیب 9989/0 و می باشد. از نتایج تحقیق می توان در طراحی خشک کن های صنعتی بهره گرفت.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیش بینی محتوای رطوبتی پیاز خوراکی در طی فرآیند خشک کردن با استفاده از شبکه عصبی مصنوعی

پیاز خوراکی به­عنوان منبع غذایی و همچنین مصارف دارویی، امروزه بسیار مورد توجه قرار گرفته است. با افزایش بیش از پیش تولید پیاز، نیاز به انبارداری، افزایش ماندگاری، کاهش ضایعات و استفاده از پودر پیاز بیشتر احساس می­شود. به­همین جهت خشک کردن این محصول به­عنوان یکی از راهکارهای عملی همواره مطرح می­باشد. امروزه با توجه به مزایای فناوری هوش مصنوعی، استفاده از شبکه­های عصبی مصنوعی در سطح وسیعی برای شب...

متن کامل

پیش بینی محتوای رطوبتی پیاز خوراکی در طی فرآیند خشک کردن با استفاده از شبکه عصبی مصنوعی

پیاز خوراکی به­عنوان منبع غذایی و همچنین مصارف دارویی، امروزه بسیار مورد توجه قرار گرفته است. با افزایش بیش از پیش تولید پیاز، نیاز به انبارداری، افزایش ماندگاری، کاهش ضایعات و استفاده از پودر پیاز بیشتر احساس می­شود. به­همین جهت خشک کردن این محصول به­عنوان یکی از راهکارهای عملی همواره مطرح می­باشد. امروزه با توجه به مزایای فناوری هوش مصنوعی، استفاده از شبکه­های عصبی مصنوعی در سطح وسیعی برای شب...

متن کامل

کاربرد شبکه های عصبی مصنوعی در پیش بینی بارش زمستانه

پیش‌بینی بارش یکی از مهم‌ترین مسائل در زمینه مدیریت بهینه منابع آب در بخش‌های مختلف نظیر صنعت، شرب و کشاورزی است. پیش بینی بارش می تواند باعث جلوگیری از تلفات و خسارات ناشی از بلایای طبیعی شود. هدف از تحقیق حاضر پیش‌بینی بارش زمستانه استان خراسان رضوی با استفاده از شبکه‌های عصبی مصنوعی می‌باشد. بدین منظور، ابتدا سری زمانی بارش متوسط منطقه‌ای به روش کریجینگ در طول دوره آماری به دست آورده شد. سپس...

متن کامل

پیش بینی خواص فیزیکی پسته با استفاده از شبکه های عصبی مصنوعی در طی فرآوری

شناخت خواص فیزیکی مغز پسته در فرآیندهای انتقال، خشک کردن، فرآوری، جداسازی، درجه بندی و ذخیره این محصول ارزشمند نقش اساسی ایفاء می کند. در این مطالعه، خواص فیزیکی پسته توسط مدل های مختلف شبکه ی عصبی شبیه سازی گردید. مدل های مختلف شبکه ی عصبی همراه با تابع های آستانه ی مختلف در پیش بینی مقادیر مساحت سطح، حجم، جرم و دانسیته ی ذره پسته مورد استفاده قرار گرفت. نتایج، نشان داد که که مدل شبکه ی عصبی ت...

متن کامل

پیش بینی رسانایی گرمایی نانوسیال گرافن با مدل شبکه عصبی مصنوعی چند لایه پرسپترون

هدف از این مطالعه مدلسازی و پیش بینی رسانایی گرمایی نانو سیال گرافن به کمک شبکه عصبی مصنوعی چند لایه پرسپترون است. پارامترهای دمای نانوسیال، کسرحجمی و رسانایی گرمایی نانو ذره به عنوان ورودی شبکه در نظر گرفته شده است. بااطلاعات مربوط به اندازه گیری‌های تجربی محققین قبلی در مورد رسانایی گرمایی نانوسیال گرافن در دمای 25 تا 50 درجه سلسیوس و در کسر حجمی  005/0 تا 056/0 تست عملکرد شبکه انجام شده است....

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
پژوهش های علوم و صنایع غذایی ایران

جلد ۳، شماره ۱، صفحات ۰-۰

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023